
Tuples and lists
▪ tuples

▪ lists

▪ mutability

▪ list comprehension

▪ for-if, for-for

▪ list()

▪ any(), all()

▪ enumerate(), zip()

Tuples

(value0, value1, ... , valuek-1)

▪ Tuples can contain a sequence of zero or more
elements, enclosed by ”(” and ”)”

▪ Tuples are immutable

▪ Tuple of length 0: ()

▪ Tuple of length 1: (value,)
Note the comma to make a tuple of length one
distinctive from an expression in parenthesis

▪ In many contexts a tuple with ≥ 1 elements
can be written without parenthesis

▪ Accessors to lists also apply to tuples, slices, ...

Python shell

> (1, 2, 3)

| (1, 2, 3)

> ()

| ()

> (42)

| 42

> (42,)

| (42,)

> 1, 2

| (1, 2)

> 42,

| (42,)

> x = (3, 7)

> x

| (3, 7)

> x = 4, 6

> x

| (4, 6)

> x[1] = 42

| TypeError: 'tuple' object does

not support item assignment

Question – What value is ((42,)) ?

a) 42

b) (42)

c) (42,)

d) ((42,),)

e) Don’t know

Question – What is x ?

a) [1, [42, 3], (4, 5)]

b) [1, [2, 3], (42, 5)]

c) [1, [2, 3], 42]

d) TypeError

e) Don’t know

x = [1, [2, 3], (4, 5)]

x[2][0] = 42

Question – What tree is ('A',(('B','C'),'D')) ?

a) b) c) d) e)

 f) Don’t know

/\ /\ /\ /\ /\

/ \ / \ / \ / \ / \

/ \ / \ / \ / \ / \

/ \ / \ / \ / \ / \

/\ 'D' / \ / \ / \ 'A' /\

/ \ /\ 'D' /\ /\ 'A' /\ / \

/ \ / \ / \ / \ / \ / \

/\ 'C' / \ 'A' 'B' 'C' 'D' / \ 'B' /\

/ \ 'A' /\ /\ 'D' / \

'A' 'B' / \ / \ 'C' 'D'

'B' 'C' 'B' 'C'

Tuple assignment

▪ Parallel assignments

x, y, z = a, b, c

is a shorthand for a tuple assignment (right side is a single tuple)

(x, y, z) = (a, b, c)

▪ First the right-hand side is evaluated completely, and then the individual
values of the tuple are assigned to x, y, z left-to-right (length must be
equal on both sides)

Python shell

> point = (10, 25)

> x, y = point

> x

| 10

> y

| 25

Unpacking

Nested tuple/lists assignments

▪ Let hand side can be nested
(great for unpacking data)

(x, (y, (a[0], w)), a[1])

= 1, (2, (3, 4)), 5

▪ [...] and (...) on left side matches both
lists and tuples of equal length
(but likely you would like to be
consistent with type of parenthesis)

Python shell

> two_points = [(10, 25), (30, 40)]

> (x1, y1, x2, y2) = two_points

| ValueError: not enough values to

unpack (expected 4, got 2)

> ((x1, y1), (x2, y2)) = two_points

> a = [None, None]

> v = ((2, (3, 4)), 5)

> ((y, (a[0], w)), a[1]) = v

> a

| [3, 5]

> [x, y, z] = (3, 5, 7)

> (x, y, z) = [3, 5, 7]

> [x, (y, z), w] = (1, [2, 3], 4)

> [x, (y, z), w] = (1, [2, (5, 6)], 4)

> z

| (5, 6)

Unpacking a sequence with one element

Python shell

> x = [42] # simple assignment

> x

| [42]

> x, = [42] # unpacking, implicit parenthesis

> x

| 42

> (x,) = [42] # unpacking

> x

| 42

> x, = [1, 2, 3]

| ValueError: too many values to unpack (expected 1)

Tuples vs lists: a += b

▪ Lists
Extends existing list, i.e., same as a.extend(b)

▪ Tuples
Must create a new tuple a + b and assign to a
(since tuples are immutable)

Python shell

> (1, 2) + (3, 4)

| (1, 2, 3, 4)

> x = [1, 2]

> y = x

> y += [3, 4]

> y

| [1, 2, 3, 4]

> x

| [1, 2, 3, 4]

> x = (1, 2)

> y = x

> y += (3, 4)

> y

| (1, 2, 3, 4)

> x

| (1, 2)

More on += on lists

Python shell

> x = [1, 2, 3]

> x += [4, 5, 6]

> x += (7, 8, 9)

> x += range(10, 13) # 10, 11, 12

> x += 'abc' # 'a', 'b', 'c'

> print(x)

| [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 'a', 'b', 'c’]

> x = [1, 2, 3] + (4, 5, 6)

| TypeError: can only concatenate list (not "tuple") to list

▪ Since a += b is the same as a.extend(b) we can also do

▪ For tuples += only accepts tuples

*variable assignment

▪ For a tuple of variable length a single
*variable name on the left side will be
assigned a list of the remaining elements
not matched by variables
preceding/following *

▪ Example
a, *b, c = t

is equivalent to
a = t[0]

b = t[1:-1]

c = t[-1]

▪ There can be a single * in a left-hand-side
tuple (but one new * in each nested tuple)

Python shell

> (a, *b, c, d) = (1, 2, 3, 4, 5, 6)

> b

| [2, 3, 4]

> (a, *b, c, d) = (1, 2, 3)

> b

| []

> (a, *b, c, d) = (1, 2)

| ValueError: not enough values to

unpack (expected at least 3, got 2)

> v = ((1,2,3),4,5,6,(7,8,9,10))

> ((a, *b), *c, (d, *e)) = v

> b

| [2, 3]

> c

| [4, 5, 6]

> e

| [8, 9, 10]

> head, *tail = [1, 2, 3, 4]

> head

| 1

> tail

| [2, 3, 4]

Question – What is b ?

(*a,(b,),c) = ((1,2),((3,4)),((5,)),(6))

a) (1,2)

b) (3,4)

c) 5

d) (5,)

e) (6)

f) Don’t know

Python shell

> (*a,(b,),c) = ((1,2),((3,4)),((5,)),(6))

> a

| [(1, 2), (3, 4)]

> b

| 5

> c

| 6

* in list and tuple construction

▪ When constructing a list or tuple you
can insert zero or more elements from
another list/tuple/sequence by
inserting *expression

▪ There can be an arbitrary number of
* expressions in a tuple or list
construction

Python shell

> A = (1, 2, 3)

> B = ['B', 'C']

> L = [A, B, 4, 5]

> L

| [(1, 2, 3), ['B', 'C'], 4, 5]

> len(L)

| 4

> L = [*A, *B, 4, 5]

> L

| [1, 2, 3, 'B', 'C', 4, 5]

> len(L)

| 7

> (*A, *B, 4, 5)

| (1, 2, 3, 'B', 'C', 4, 5)

Python shell

> from timeit import timeit

> timeit('A + A + A + A + A + A + A + A', setup='A = [1,2,3,4,5,6,7,8,9,10]')

| 0.665172699955292 # repeated concatenation can be slow

> timeit('[*A, *A, *A, *A, *A, *A, *A, *A]', setup='A = [1,2,3,4,5,6,7,8,9,10]')

| 0.32599859999027103 # * notation can be faster for multiple concatenation

list_catenation.py

import matplotlib.pyplot as plt

from timeit import timeit

ns = range(2, 101)

P, S = [], []

for n in ns:

setup = 'A = list(range(10))'

plus = ' + '.join(['A'] * n)

star = '[' + ', '.join(['*A'] * n) + ']’

P.append(timeit(plus, setup=setup))

S.append(timeit(star, setup=setup))

plt.plot(ns, P, '.-', label='A + ... + A')

plt.plot(ns, S, '.-', label='[*A, ..., *A]')

plt.legend()

plt.ylabel('time (sec 10^{-6})')

plt.xlabel('number of As')

plt.show()
~ 0.046 x

~ 0.0081 x2

List comprehension (cool stuff)

▪ Example:

[x*x for x in [1, 2, 3]]

returns

[1, 4, 9]

▪ General

[expression for variable in sequence]

returns a list, where expression is computed
for each element in sequence assigned to
variable

Python shell

> [2*x for x in [1,2,3]]

| [2, 4, 6]

> [2*x for x in (1,2,3)]

| [2, 4, 6]

> [2*x for x in range(10,15)]

| [20, 22, 24, 26, 28]

> [2*x for x in 'abc']

| ['aa', 'bb', 'cc']

> [(None, None) for _ in range(2)]

| [(None, None), (None, None)]

List comprehension (it’s just syntactic sugar…)

Python shell

> [x * 2 for x in [1, 2, 3]]

| [2, 4, 6]

> L = []

> for x in [1, 2, 3]:

> L.append(x * 2)

> L

| [2, 4, 6]

List comprehension (more cool stuff)

▪ Similarly, to the left-hand-side in assignments, the variable part can
be a (nested) tuple of variables for unpacking elements:

[expression for tuple of variables in sequence]

Python shell

> points = [(3, 4), (2, 5), (4, 7)]

> [(x, y, x*y) for (x, y) in points]

| [(3, 4, 12), (2, 5, 10), (4, 7, 28)]

> [(x, y, x*y) for x, y in points]

| [(3, 4, 12), (2, 5, 10), (4, 7, 28)]

> [x, y, x*y for (x, y) in points]

| SyntexError: invalid syntax
parenthesis required for
the constructed tuples

List comprehension – for-if and multiple for

▪ List comprehensions can have nested for-loops

[expression for v1 in s1 for v2 in s2 for v3 in s3]

▪ Can select a subset of the elements by adding an if-condition

[expression for v1 in s1 if condition]

▪ and be combined...

Python shell

> [(x, y) for x in range(1, 3) for y in range(4, 6)]

| [(1, 4), (1, 5), (2, 4), (2, 5)]

> [x for x in (1, 2) for x in (4, 5)]

| [4, 5, 4, 5]

> [x for x in range(1, 101) if x % 7 == 1 and x % 5 == 2]

| [22, 57, 92]

> [(x, y, x*y) for x in range(1, 11) if 6 <= x <= 7 for y in range(x, 11) if 6 <= y <= 7 and not x == y]

| [(6, 7, 42)]

Question – What will print the same?

points = [(3,7), (4,10), (12,3), (9,11), (7,5)]

print([(x, y) for x, y in points if x < y])

a) print([x, y for x, y in points if x < y])

b) print([(x, y) for p in points if p[0] < p[1]])

c) print([p for p in points if p[0] < p[1]])

d) print([[x, y] for x, y in points if x < y])

e) Don’t know

List comprehension – space usage long lists

▪ Memory usage according to “Task Manager” in Windows

▪ Unpacking makes code more readable, but creating new tuples requires additional space…

list_comprehension_space_usage.py

input('press enter')

points = [(x, x + 1) for x in range(10_000_000)] # dummy points

input('press enter')

selected = [(x, y) for (x, y) in points if y == x + 1]

input('press enter')

selected = [point for point in points if point[1] == point[0] + 1]

input('press enter')

1306.1 MB

1995.5 MB

1385.5 MB

4.2 MB

Good: refers to existing tuple
(8 bytes per point)

Bad: looks ugly (hard to read)

Good: looks nice
Bad: creates new tuples

(64 bytes per point)

any, all

▪ any(L) checks if at least one element in
the sequence L is true (list, tuple, ranges,
sequence, strings, ...)

any([False, True, False])

▪ all(L) checks if all elements in the
sequence L are true

all([False, False, True])

▪ any and all return True or False

Python shell

> any((False, True, False))

| True

> any([False, False, False])

| False

> any([])

| False

> all([False, False, True])

| False

> all((True, True, True))

| True

> all(())

| True

> L = (7, 42, 13)

> any([x == 42 for x in L])

| True

> all([x == 42 for x in L])

| False

Example – computing primes

Python shell

> [x for x in range(2, 50) if all([x % f for f in range(2, x)])]

| [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]

> [10 % f for f in range(2, 10)]

| [0, 1, 2, 0, 4, 3, 2, 1]

> all([10 % f for f in range(2, 10)]) # == 0 is considered False

| False

> [13 % f for f in range(2, 13)]

| [1, 1, 1, 3, 1, 6, 5, 4, 3, 2, 1]

> all([13 % f for f in range(2, 13)])

| True

enumerate
list(enumerate(L))

returns
[(0, L[0]), (1, L[1]), ..., (len(L) - 1, L[-1])]

Python shell

> points = [(1, 2), (3, 4), (5, 6)]

> [(idx, x * y) for idx, (x, y) in enumerate(points)]

| [(0, 2), (1, 12), (2,30)]

> L = ('a', 'b', 'c')

> list(enumerate(L))

| [(0, 'a'), (1, 'b'), (2, 'c')]

> L_ = []

> for idx in range(len(L)):

> L_.append((idx, L[idx]))

> print(L_)

| [(0, 'a'), (1, 'b'), (2, 'c')]

> list(enumerate(['a', 'b', 'c'], start=7))

| [(7, 'a'), (8, 'b'), (9, 'c')]

zip

list(zip(L1,L2,...,Lk)) = [(L1[0],L2[0],...,Lk[0]),...,(L1[n-1],L2[n-1],...,Lk[n-1])]

where n = min(len(L1), len(L2),..., len(Lk))

▪ Example (“matrix transpose”):

list(zip([1,2,3],

[4,5,6],

[7,8,9]))

returns

[(1, 4, 7),

(2, 5, 8),

(3, 6, 9)]

Python shell

> x = [1, 2, 3]

> y = [4, 5, 6]

| zip(x, y)

> <zip at 0xb02b530>

> points = list(zip(x, y))

> print(points)

| [(1, 4), (2, 5), (3, 6)]

Python shell

> first = ['Donald', 'Mickey', 'Scrooge']

> last = ['Duck', 'Mouse', 'McDuck']

> for i, (a, b) in enumerate(zip(first, last), start=1):

> print(i, a, b)

| 1 Donald Duck

| 2 Mickey Mouse

| 3 Scrooge McDuck

(Simple) functions

▪ You can define your own functions using:

 def function-name (var1, ..., vark):

 body code

▪ If the body code executes

 return expression

the result of expression will be returned by the function. If expression is omitted or the
body code terminates without performing return, then None is returned

▪ When calling a function name(value1,..., valuek)body code is executed with vari=valuei

Python shell

> def sum3(x, y, z):

 return x + y + z

> sum3(1, 2, 3)

| 6

> sum3(5, 7, 9)

| 21

> def powers(L, power):

P = [x**power for x in L]

return P

> powers([2, 3, 4], 3)

| [8, 27, 64]

Question – What tuple is printed ?

def even(x):

if x % 2 == 0:

return True

else:

return False

print((even(7), even(6)))

a) (False, False)

b) (False, True)

c) (True, False)

d) (True, True)

e) Don’t know

180 ° < α < 360°

0 ° < α < 180°

Geometric orientation test

Purpose of example

▪ illustrate tuples

▪ list comprehension

▪ matplotlib.pyplot

▪ floats are strange

q = (12, 12)

r = (24, 24)
p

x

y

det =

1 𝑞𝑥 𝑞𝑦
1 𝑟𝑥 𝑟𝑦
1 𝑝𝑥 𝑝𝑦

= 𝑟𝑥𝑝𝑦 − 𝑝𝑥𝑟𝑦 − 𝑞𝑥𝑝𝑦 + 𝑝𝑥𝑞𝑦 + 𝑞𝑥𝑟𝑦 − 𝑟𝑥𝑞𝑦

det > 0

det < 0

det = 0

6 ! = 720 different orders to add

(0.5, 0.5)
(0.5+ε, 0.5+ε)

Kettner, Mehlhorn, Pion, Schirra, Yap:
Classroom Examples of Robustness Problems in Geometric Computations

https://doi.org/10.1007/978-3-540-30140-0_62

sign-plot.py

import matplotlib.pyplot as plt

N = 256

delta = 1 / 2**54

q = (12, 12)

r = (24, 24)

P = [] # points (i, j, det)

for i in range(N):

for j in range(N):

p = (1/2 + i * delta, 1/2 + j * delta)

det = (q[0]*r[1] + r[0]*p[1] + p[0]*q[1]

- r[0]*q[1] - p[0]*r[1] - q[0]*p[1])

P.append((i, j, det))

pos = [(i, j) for i, j, det in P if det > 0]

neg = [(i, j) for i, j, det in P if det < 0]

zero = [(i, j) for i, j, det in P if det == 0]

plt.subplot(facecolor='lightgrey', aspect='equal')

plt.xlabel('i')

plt.ylabel('j', rotation=0)

for points, color in [(pos, "b"), (neg, "r"), (zero, "y")]:

X = [i for i, j in points]

Y = [j for i, j in points]

plt.plot(X, Y, color + ".")

plt.plot([-1, N], [-1, N], "k-")

plt.show()

(0.5000000000000142, 0.5000000000000142)

(0.5, 0.5)

det > 0 det = 0 det < 0

	Slide 1: Tuples and lists
	Slide 2: Tuples
	Slide 3: Question – What value is ((42,)) ?
	Slide 4: Question – What is x ?
	Slide 5: Question – What tree is ('A',(('B','C'),'D')) ?
	Slide 6: Tuple assignment
	Slide 7: Nested tuple/lists assignments
	Slide 8: Unpacking a sequence with one element
	Slide 9: Tuples vs lists: a += b
	Slide 10: More on += on lists
	Slide 11: *variable assignment
	Slide 12: Question – What is b ?
	Slide 13: * in list and tuple construction
	Slide 14
	Slide 15: List comprehension (cool stuff)
	Slide 16: List comprehension (it’s just syntactic sugar…)
	Slide 17: List comprehension (more cool stuff)
	Slide 18: List comprehension – for-if and multiple for
	Slide 19: Question – What will print the same?
	Slide 20: List comprehension – space usage long lists
	Slide 21: any, all
	Slide 22: Example – computing primes
	Slide 23: enumerate
	Slide 24: zip
	Slide 25
	Slide 26: (Simple) functions
	Slide 27: Question – What tuple is printed ?
	Slide 28: Geometric orientation test
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

